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tn this paper, the new Lagrangian method introduced by Loh and Hui
is extended for 3D steady supersonic flow computation. We present the
derivation of the conservation form and the solution of the local
Riemann solver using the Godunov and the high resolution TVD
schemes. The new approach is accurate and robust, capable of
handling complicated geometry and interactions botween discon-
tinuous waves. As shown in the test problems, the current Lagrangian
method retains all the advantages claimed in the 2D method, e.g., crisp
resalution of a slip-surface {contact discontinuity) and automatic grid
generation. In this paper, we also suggest a nove! 30 Riemann problem
in which interesting and intricate flow features are present. © 1994
Academic Press, Ing.

1. INTRODUCTION

It is well known that there exist two formulations
describing fluid motion, namely, Eulerian and Lagrangian.
The inviscid compressible flow as modelled by the Euler
equations of gas dynamics is of both theoretical and practi-
cal importance. Over the past four decades much progress
has been made in its numerical simulation. Particularly in
the 1980s we witnessed an exhaustive exploration of up-
wind, monotone schemes, notably exact and approximate
Riemann solvers, see an extensive review by Roe [1].
However, most of the existing works are based on the
Eulerian description of fluid motion, with the exception of
one-dimensional flow. On the other hand, back in the fiftics
and sixties, studies of fluid motion based on the (conven-
tional) Lagrangian description were carricd out, most
notably in Los Alamos and Lawrence Livermore National
Laboratores. One feature of the Lagrangian approach is
that the computational grid is embedded in the fluid and
distorted with its motion. A major limitation of this
approach is its inability to cope with large distortion of the
grid when it becomes tangled and highly irregular. Thus, a
hybrid Lagrangian-Eulerian approach is attempted (such
as the ALE—arbitrary Lagrangian Eulerian method {21])
to recover the grid regularity. Unfortunately, the con-
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tinuous geometrical interpolation in this hybrid approach
eventually leads to loss of accuracy. As a result, since the
late sixties, the Eulerian approach wins the upperhand for
its easy control of grid and grid regularity. However, the
very essence of the Lagrangian approach, that a computa-
tional cell being a fluid particle and remaining intact, is
missed in the Eulerian one, in the numerical simutation
based on the Eulerian description, a slip surface {contact
discontinuity}, being lincarly degenerated, is increasingly -
smeared as the solution marches further, either in time or in
space. In fact, the resolution of contact discontinuity in
Eulerian formulation is still a current research topic (e.g.,
see Harten [3]).

Recently, based on the concept of the Lagrangian time
introduced by Hui and Van Roessel [5], Loh and Hui [4]
derived a new Lagrangian conservation form for the 2D
inviscid compressible flow governed by Euler equations and
successfully demonstrated its capability in supersonic flow
computation. In the new formulation, the Lagrangian time
v and the stream function ¢ replace x and y as the inde-
pendent variables and the remapping stage is eliminated.
They introduced the “geometrical conservation™ to over-
come the loss of accuracy in geometrical quantities. In the
new Lagrangian formulation, a computational cell is
literally a fluid particle and flow physics is closely foliowed.
As a result, slipline (contact discontinuity} is crisply
resolved, without any detection or artificial treatment, and
never smeared flurther.

In the present paper, we shall extend the new Lagrangian
approach of [4] to a three-dimensional steady supersonic
flow computation. The extension is not a trivial one since
the geometry is complicated and the exact Riemann solu-
tion in multi-dimensions is not yet known. Thus we give an
approximate approach to the Riemann problem of the pre-
sent Lagrangian formulation. In Section 2, starting from the
three-dimensional Eulerian conservation form, together
with the compatibility equations (the geometrical conserva-
tion laws), we introduce the new Lagrangian conservation
form for three-dimensional steady flow. In Section 3, we
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describe the implementation of the Godunov and TVD
scheme. In Section 4, we illustrate the so-called pseudo
three-dimensional Riemann problem and its solution, which
is the basic building block in Section 3. In Section 5, we
briefly discuss the well-posedness of the Cauchy problem in
question. The well-posedness or the general CFL condition
controls the stability of the numerical procedure. It is shown
how this condition is easily met in the present Lagrangian
approach. Through several test examples in Section 6, we
shall show the robustness and accuracy of the new
approach. Finally, the paper is completed with our con-
cluding remarks.

2. THE NEW LAGRANGIAN CONSERYATION FORM FOR
THREE-DIMENSIONAL STEADY FLOWS

For any modern shock-capturing scheme, an appropriate
conservation form is essential for the accuracy. We begin the
derivation of the Lagrangian conservation form with the
Eulerian conservation laws written for three-dimensional
steady flows,

8E ¢F oG
=0, 1
ax * dy 0z (1)
where
pu pv pw
put+p pru pw
E= puw |, F=} p’+p |, G= pPWU
puw pow pw 4 p
puH pvH pwH

As usual, %, v, w, p, and p are respectively the Cartesian
components of flow velocity, density, and pressure of the
fluid obeying the y-law; the total enthalpy

v
(y—1)p’

Lo,
H=§(u‘+u2+w2)+ y=14,

Recently, Loh and Hui [4] introduce a new Lagrangian
conservation form for two-dimensional steady supersonic
flow computation, which is based on the concept of
Lagrangian time [5, 6]. The Lagrangian time is indeed a
physical time—the time of motion of each fluid particle
along its own streamline. For each fluid particle, following
its streamline the Lagrangian time differs from the physical
time ¢ only by a constant £;:

T=1+1,

(2)
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which may be regarded as the local initial time associated
with each fluid particle. In this formulation 7 and the stream
function & replace x and y as the independent variables. A
computational cell is literally a fluid particle and the flow
physics is closely followed. The Lagrangian approach
possesses many attractive features that are missed in the
Eulerian one, such as crisp resolution of slipline and
automatic grid generation.

In an attempt to explore a Lagrangian approach for
higher dimensions, in this section we shall extend the new
Lagrangian formulation in [4] to a three-dimensional one
and derive the corresponding conservation form. There are
two types of Lagrangian conservation form [7]. The basic
one is based on Lagrangian time t and the enhanced one
based on the “Lagrangian distance” i. By Lagrangian dis-
tance we mean the distance (arc length) along a streamline.
In the presence of strong contact discontinuities or slip-
surfaces the latter does a better job in numerical computa-
tions. In this paper, we shall use for our computation the
conservation form based on the “Lagrangian distance” 4
(the A conservation form). It is noted that this form can be
derived from the t-formulation as we have chosen to do
in the present paper, or directly from the original Euler
gquations.

It is well known that in a three-dimensional steady flow,
there exist two independent stream functions, say, £ and #.
Each fixed & or # represents a stream surface (Fig. 1a). A
fixed pair of £ and 5 denotes a streamline in the three-dimen-
sional space. Following the streamline, the Lagrangian
time 7 or the Lagrangian distance 4 uniquely determines the
location of the fluid particle. In other words, for example,
{z, £, 1) may be considered as a new set of independent
variables, which are now functions of the Cartesian coor-
dinates r = (x, y, z)". Since (2) holds along a streamline (on
which &, n are held fixed), the fluid velocity V is

dr  or
V= ————
(v, w)T == = (3)
Furthermore, we define the Lagrangian quantities
i b
T=(@W V. W =2, S=(X1Z=55 @
7 on

these quantities represent the lateral rate of displacement of
a fluid particle (or computational cell). The determinant of
the Jacobian J,

d(x, y, 2)
az, s n

1=

M o ®
~ oo
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FIG. 1. Computational space and mesh.

denotes the volume ratio during the change of independent
variables. Subsequently, similar to [4],

U v w
K=pll=p|U V W|, (6)
Xy Z

is the mass flux (Fig. 1d).

We also note that the following relations are the
compatibility conditions between the t-derivatives,
&-derivatives, and n-derivatives of x, v, and z,

Cell
surface —-\‘ s 1
\ i
L} o i -
T ! v
I
K=p(TxS)+V
uv w
=pfU V W‘
Xy z
(d)
oT_av
dr 8¢’
s av
R (7)
oT _as
oan o

Starting with the Eulerian conservation form (1) and the
relations (3)(7), we can perform the variable transforma-
tion from (x, y, z) to (1, &, 1) and achieve the conservation
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form based on Lagrangian time . In this T conservation
form, each fluid particle marches forward with the same
time step At according to its own velocity. Across a contact
discontinuity (slip surface) where flow velocity may be dis-
continuous, two adjacent fluid particles initially in physical
contact may eventuaily be separated from each other,
rendering it difficult to apply a local Riemann solver in the
Godunov/TVD schemes. A remedy is to keep these two par-
ticles marching in the same pace. More generally, we can let
all the fluid particles march the same distance 44 instead of
the same time step 47 along their own streamlines. This idea
leads to another new Lagrangian conservation form—the
conservation form based on the Lagrangian distance 4. Hui
and Zhao have all the details in their recent paper [7]. We
present here only a sketch of the necessary steps.
First, we define the Lagrangian distance as

1= j " g dr, (82)
0
where the flow speed

g= (u2 +0 4 wz)uz'

The other independent variables are the same as before:

61 =é (Sb)
H=1
Let
04 oA
6= *(%, ﬁ = 6—11
From (8), two useful relations can be easily derived:
ou_13g  B_10g o)
. gt oA qin

Now, we can make the coordinate transformation from
(4 &, m ) to (z, & n) and the Jacobian J, is

_a(/lafls’h)
Ya &)
dAfér &¢yjar on, /ot g
=|04/2¢ 8¢,/0¢ oOn [O¢ |=| «
gAfdn o /on ony/in i

The inversed J, is
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J = 7
! A, &y, ny)
dt/oh  0E/OX  Onjoi /g 0 0
=| 67/0&, 8&/0E, njot, |=| —x/q 1 0.
ot/on, offon, onfon, —Blg 0 1

Our final goal is a transformation from (x,y,z) to
(4, £,, n,), which can be achieved via successive coordinate

transformations: {(x, y, z)< (1, &, n) == (4, &€, 1,). The
resultant Jacobian J, is
7= 0(x, 3,2} _ n &M %y, 2)
0 a(j'sé13’11) a(lﬂilsnl)a(rsésn)
lig 0 O\/u » w
=| —aig 1 O)|lU Vv W
—Blg 0 1/)\X Y Z
ulq vig wiq
=| U—~aulg V—ov/g W—owlg
X—PBujq Y—Pvlqg Z-pw/q
By inverting the Jacobian J, we have
_1=a(lzél=r]l)
! é(x, y,2)
d4/ox 0 [ox dnyfdx Ju Ju S5
=\ auoy oeisoy emsay |= | Tn I
0Af0z  0§,/0z  om,/oz Jis T Ji
(10)

Here, J,, (r, s =1, 2, 3) are the cofactors of the determinant
|/ |. We also note that the determinant

/| K
ol =—=—.
g4 pq

Equation (10} provides all the partial derivatives 3/dx, 8/dy,
and d/éz that are needed in converting the Eulerian conser-
vation form (1) into a new Lagrangian conservation form
with (4, &,, n,) as the independent variables:

¢ é i ,
__ﬂ(-]u_‘f‘-]n_'*'-]zl a)e
1

ox K 2 8¢,

d pg J 0 g

— =2 I, =+ T —
oy K( 126’1-!- 22651+J325’11),

¢ pg ¢ d 5
=K (J“ o T ng e am)'

After some algebraic manipulation, (1) is transformed
into a new Lagrangian i conservation form:
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K 0 0
Ku+pJy, 2 Pl pJ3
i Kv+pJ; +5—1 pJas +5—T pls =0
Kw+ pJis PJas PJa
HK 0 0

(t1)
We note that the first equation in (11) implies that
K =constant along a streamline and hence the fifth equa-
tion is reduced to

oH
—=0.
aa
Moreover, corresponding to (4), we define T, and 8, as the
line vectors of the Jacobian Jg, i,
T,=T—-aV/g,
S, =8—-fV/g,

T1=(U1= V1= WI)T5
Sl=(Xl’ Ylazl)T'

These vectors represent the geometrical deformation of the
computational cells {fluid particles}. Similar to the com-
pability equations (7), it can be shown, by using (7) and (9)
that

AYWALL

al 8’

d8, dV/g

2 o (12)
oT, _38,

in, 561'

Combining (11)and (12) and then dropping the subscript
“1,” we achieve a complete set of the new Lagrangian
conservation form based on the A-variable,

JE J0F 4G
—+—+—=0, 13
a1 o (13)
where

r'el ™ 2 K ™

€, H

€5 Ku+ pJ,

€4 Kv+pJy,

€s Kw+ pJis

E=]e |= U s

- €q V

€q W

eg X

210 Y
Len) L Z J
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(0 ) (0 |
0 0
pJa Pl
P2 P
Py I3

F=| —-u/q |, G= 0
—u/q 0

—w/g 0
0 —ufq
0 —v/g

L0 L~ W/4

In (13), the third equation in {12) is ignored since it has no
contribution to E and is automatically satisfied.

As noted-earlier, the Lagrangian conservation form (13)
can, of course, be directly derived from the very first
principles of physics and the compatibility equations by
considering the computational cell as a segment of the
stream tube between two marching surfaces.

The system (13) may look overwhelming at first glance
and could be rejected prematurely. However, further
examination reveals many simpiifications and identities.
The first two equations simply imply that H = const,
K =const aiong a streamline. For steady supersonic flows,
one needs only to handle the rest of the nine equations in
order to march forward and solve the system. Among them,
the six compatibility equations for e, e,, ...e,, can be
solved in a straightforward way, as will be seen in next sec-
tion, and only the three momentum equations for e,, e,,
and e, require more attention in the numerical procedure.

3. APPLICATION OF GODUNOYV AND TVD SCHEMES

For a supersonic flow with the overall Mach number
M > 1 everywhere, the system (13) is of hyperbolic type.
Details about the hyperbolicity of (13) are included in the
Appendix at the end of the paper. In the past four decades
various numerical methods have been developed to handle
the hyperbolic systems; there exists a complete spectrum of
shock-capturing finite difference/finite volume schemes to
solve the hyperbolic system of conservation laws, such as
Godunov, flux-splitting, TVD, UNO, ENO, etc. In the
present paper, as an early exploration of the new 3D
Lagrangian method, we apply the basic Godunov scheme
and then upgrade it to a high resolution TVD scheme.

3.1. Application of Godunov Scheme

The physical domain and computational domain in the
A-&-n space are respectively illustrated in Figs. la and 1b. A
cuboid mesh in the computational domain is used and the
computation marches in Lagrangian distance 4. The super-
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script £ refers to the marching step number and the
subscripts i and j refer to the cell number on the distance
plane (4 plane with 2= const). The marching step A% =
A¥+' _ 3% is uniform for all i and j. It may vary with &, but
it is always chosen to satisfy the usual CFL linear stability
condition. The mesh divides the computational domain into
cuboid control volumes or cells which in the ¢ and p
direction are centered at (4%, £,, »,) and have heights 4¢, =
Eivip—Eimp and Ay =9, 10—, (for all k). Unless
otherwise stated we shall use uniform cell width 4¢; for all
iand Ay, for all j.

In the physical space a cuboid cell marching in (4, £, )
space corresponds to a fluid particle marching along its
stream tube with step 4.i. The fluid particle is bounded
by four stream surface {=¢,.,, and y=x,,,, around
it (Fig 1c). The £—» plane in computational space
corresponds to the initial surface in the physical space. Any
curvilinear coordinate mesh on the initial surface may be
used as the -1 coordinate mesh and the initial T and S can
be determined as part of the inifial condition. A solid wall is
always a stream surface and, hence, a coordinate surface.

The finite difference scheme of Godunov [9] for (13) is
derived by appiying the divergence theorem to the cuboid
cell (i, j, k). The result is

Ai*
E (Fffllfzz,;_ F:'(—_Fll,ffzz,j)
AA*

-
Anj

E+1 _ Ik
Ei.,." - EU—

k4172 k+172
Gi,j+1,t‘2—GLj—1,f2)’

i=1,2,..m; j=12 .,n, (14)

where the notation for the cell average of any quantity fis

1 Siay2 UL
= SO Enydédn,  (15)
- Aéi qu L;,m '|‘>:'j-1,'2
and the notation for £ average of fis
1 PLES] .
frlt'éz_jzmj)k f(/“a éi+l,’2s rJ‘;) d’:" (16)
1 )_.k&rl
Sl= ] S dh (D)

In (14) the cell-interface fluxes F} 7,7, and G{ 12, for
the cell (i, j) are to be obtained from the self-similar solution
of a local three-dimensional Riemann problem formed by
the average constant state Q, ;= (u, v, w, p, p)L of the cell
(i, J) and those of its adjacent cells (Fig. 2a). Unfortunately,
due to its complexity, the exact solution to a general three-
dimensional Riemann problem is not yet available [ 10]. On
the other hand, it is known that a montene difference
scheme to a general conservation form converges to the
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physically relevant entropy-satisfying solution (sec Harten
et al. [11]). In particular, Crandall and Majda [12]
establish the rigorous convergence for dimensional splitting
algorithms when each step is approximated by a monotone
difference scheme (such as the Godunov scheme) for a single
conservation law of multi-dimensions. We shall extend and
apply the dimensional splitting in the Godunov scheme for
our hyperbolic system of conservation laws (13).

When applying the dimension-splitting technique in the
Godunov scheme for (13), one only needs to solve a pseudo
three-dimensional Riemann problem formed by two adja-
cent constant states, say, Q, ;and Q, ., ;instead of genuine
three-dimensional ones (Figs. 2a and 2b). In fact, a pseudo
three-dimensional Riemann problem is identical to a
two-dimensional one [4], except that the direction of the
interaction line of the two constant states must be known.
We have more details about the pseudo three-dimensional
Riemann problem in the next section.

The interaction between two 3D supersonic flows of con-
stant states separated by a plane is much more complicated
than in the 2D case. The interaction line is designed to
handle this situation. It is the line at which the two three-
dimensional flows begin to contact and interact with each
other (Fig. 2b and Fig. 3). In order to find the direction or
the unit vector of the interaction line and solve the corre-
sponding pseudo-three-dimensional Riemann problem, in
which we are given cells (4, j) and (i + 1,7), (Q.;, T, ;, Si ;)
and (Q,y ;, Tipy ;, Sis1, ;). we recommend two approaches.

In the first approach, we consider the interaction line as
the intersection line of two adjacent A surfaces and the
following two steps are followed (Fig. 2¢):

(a) Calculate the unit normal vectors of the A surface of
Cells (i, j)and (i+1,/):
— T ;%8 N, = Ti+l,jxsi+l.j‘
! |ngjXSj,jl B {Ti+1,jxsi+i\jl

If the cell is a boundary cell, i.e., one or more of its walls is
a given solid body surface, and interacting with the solid
boundary (Fig. 2d), we still calculate the unit normal
corresponding to the cell (i, j):

T, ; xS,
ST xS

ij

(b) Calculatem, =n, ;xn,,, ; the directional vector of
the interaction line. If |[m, | < ¢, where ¢ is a threshold value
to avoid possible ill-conditionedness and filter possible
noise, then discard the present, m; and use the one of the
previous time step. We find £ =0.05 is quite appropriate in
all our numerical examples. Then m, is normalized to a unit
vector. If a solid wall is present,

My =Ny, XN, ;.
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FIG. 2. Determination of the interaction line: (a) typical 3D Riemann problem in the Godunoy scheme; (h) pseudo 3D Riemann problem with initial
states Q;Q;,.,,;; (c) interaction line direction for a pseudo 3D Riemann problem; (d) interaction line direction for a pseudo 3D boundary Riemann
problem; {¢) initial data for a standard 2D Riemann problem on the interacting plane.

Here we assume the unit normal vector n,,, of the solid
body surface is given as a boundary condition. On the initial
surface, m, is specified as the unit vector of cell interface
lines.

The second approach is to reconstruct the cell edge (le.,
the interaction line) by averaging cell center locations. For
example, the cell edge between cells (i, j) and (i + 1, ) can

be obtained by connecting the two vertices, one being the
average of the center locations of cells {4+ 1,7), (ij}
(i+1,j+ 1), (i,j+ 1) and the other the average of center
locations of cells (4,5), (i—1,)), (Lj+1), (i—1,j+1)
(Fig. 2e¢). Therefore, the directional vector (to be nor-
malized) m, has a simple form

m; = (m]xs mlys mlz)T
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with the components

My =XV X=Xt~ Xty
M=V 01T Yigr;— Yic1 01— Yiong

My, =Zip et T2t~ Fic it —Zio

Comparing to the above interaction line approach steps (a)
and (b), this one is much simpler and seemingly more
consistent. In our numerical experiments with these two
approaches, the results are practically identical.

Ongce the interaction line is known, from which we con-
struct a local Cartesian coordinate system and apply a usual
2D Riemann solver in the following way. The validity of
doing so will be described in the next section.

{c) Project the flow velocity vector V, ; on the plane per-
pendicular to m, (the interaction plane, Fig. 2f, Fig. 3} to
obtain V,, V, is then normalized to give m,—the second
unit vector, which is normal to m, as well. In the mean time,
V.1, is projected on the same interaction plane,
yielding V,,

Vii=Vo+ Ve,

v:‘+$,j=vr+vsh
together with

Vo =(V;-m}m,,
Via=(Viy,; m)my,
where the subscripts “6™ and “r” correspond to bottom and

top states (see the next section) which are the counterparts
of right and left states in one-dimensional unsteady flow.

(d) Let m;=m, xm,, then, m;, m,, m, form a local
right-hand Cartesian coordinate system, m, and m, span
the interaction plane, in which we have two constant states:

Q= (up, 04, Py )" = (V] 0.p: Pi,j)s
Qr=(ur7 Vs Doy pr)T =(Vr 'mZ:vl ‘M, Py 1, pi+l.j)'

Then a standard 2D Riemann solver (see the next section)
can be used to solve for new Q, and Q,. If the cell is a
boundary ceil interacting with the solid boundary, the data
of Q=0Q, is enough for computing new Q via a standard
two-dimensional boundary Riemann solver.

(¢) Recover new interface three-dimensional states for
the purpose of computing cell interface fluxes:

k12

k+1/2 -
v Piri2,;= Po-

i1 = UpMy +0,My+ V),
The same procedure (a)}-(e} is to carry out for all four cell
interfaces around the cell (i, j), namely, the interfaces
(i+1/2,j£1/2) (Fig. c).

In the first-order Godunov scheme the cell average Ef ; at
time step & is considered as constant within the cell (7, /) and
the fluxes F*} 22 along the interface between cells (7, /) and

i+ 1/2.§
(i+1,j) and G* 2, along the interface between cells (i, j)

Li+12
and (7, j + 1}fror;1 st/ep k to step k£ + 1 are obtained as in (16)
and (17). Due to the self-similarity of the solution of the
pseudo-three-dimensional Riemann problem, for any com-
ponents f of fluxes F and G, (16) and (17) may be reduced

to

fle,/fz%j:f(Aan, §z+1/2: '?j)a (18)
ff;.lﬁz =f(lk+ma i 'L-‘+1,'2)- (19)

from (13), we see that f'is a simple function of Q, T, and §.
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Now we summarize the complete numerical procedure of
Godunov method:

(i) Initiation. Given a three-dimensional flow problem
in the Cartesian (x, y, z)-space, we choose a surface I, not
itself a stream surface, on which the flow is known (e.g., a
given uniform flow), as the initial surface A=0 (Fig. la).
Then a parameterized curvilinear £ — y coordinate mesh is
laid on I (for instance, we take & and » equal to the arc
length of their corresponding coordinate lines on '), with

¢=Cw &1, o &y M=o, My 2y oo My
and &, and/or n, coinciding with the solid body surfaces
(Fig. 1). Hence T, S° as well as the flow variable Q°, are
known on I as initial conditions. Then Egj are knownon I’
as well. In most of the test examples of the present paper, we
take the uniform free stream as the x-direction, y — z plane
as the initial surface I, and choose &, # to be the respective
arc lengths of y- and z-coordinate lings. This results in
T%=(0,1,0)T, §°=(0, 0, 1)T, and the averaged E° foilows
from (15) in a straightforward way.

(i) With all E}, and Qf, known at stepk
(k=0,1,2,..), solve the local pseudo-three-dimensional
Riemann problems (or local boundary Riemann problem)
at the cell interfaces and obtain the cell interface flow
variables: V{7, or VA2 and piy (R, or pitl7; as
described in the above context. Then fluxes F and G are
calculated from (18) and (19), or more explicitly, from the
F and G expressions in (13). In order to do so, we first
update T¢ , and 8%, to T¥ ' and 8§ 7 :

k+1
Uj-.f A}k
K+l | _pk+1_k _27%
Vii  |=Ti =T, AL
Wk+l G
L
k+1/2 k+1/2
Vi+1,’/2.j vi*],ﬂ‘Z.j 20
X k+ 12 _k+12 ( )
Divaja; di-12;
k+1
X AiF
YErL f_ghk+l gk T
L ij T
Zk+1 H;
ij
k4172 k4172
Vr',j+fl/2 Vi.]—l/Z 21
X k+172 — _k+172 | ( )
Fijryz Gij-1p
i=4L2,.,m j=1,2,.,n k=0,1,2 ..

Thus the calculation of the sixth to the eleventh components
of the interface fluxes F and G, and the updating of U, V, W,
X, Y, and Z (ie. e, €7, .., €,) are now complete. With
(U, ¥V, )" and (X, Y, Z)" from (20), (21), the computed
cell-interface V517, or VEI!Z, from the pseudo 3D
Riemann solver, the cofactors J,, (r=2,3,5=1, 2, 3)at the
cell interfaces can be calculated according to the following
list:
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I 1 vow _1 U w J __1 U v
21 — q Y Z! 22_q X Z! 23— X Y’
1|l w u w 1w v

J31=a W(’ J32=—§ U Wl 33T U v

Furthermore, by utilizing the céll-interface pressure pi}5

or pi +", and J,,, the third, fourth, and fifth components of
the interface fluxes F and G are calculated according to
their expressions in (13). For example, for the cell (i, j), the
third component of F at the interface between cells {i + 1, j)
and (i, j) is evaluated as

k4172
Pivi ;v

T k4172
qivip2j

k+1/2
P+ 172,

k+t
Y]

k+172
Wivija,;

k+1
Z:’J

(iii) Use (14) to update E; ; and advance by one step. At
this stage, one only performs the updating of e, e4, and ¢,
since there is no need to update the constants e, and e,
while e,, e, ..., e,,, being identical to U, V, W, X, Y, and Z,
have been computed in the previous step.

(iv) Decode EfT' to obtain Qf; . For simplicity, all
the /, j, k superscripts and subscripts are dropped off. Define

(I+v). ,

A= JL I+ T4,
(]Q?)( ntJy 13
B=——(J, 65+ Jp284+J305),

(?_1)( iE3 i2%4 13 5)

C=eltel+el—2KH,
where the cofactors are

vV W

JII:’Y 7

W
A

ol el

X v
Then the pressure p satisfies the quadratic equation
Ap*+ Bp+ C=0.

It can be shown that 4= B> —44C >0 and the physically
relevant selution for p is

~B+. /4
24 7

p= (22a)
and the other flow variabies follow directly:
es—pluy ea—pJys es—pJis
= = . = » 22
u i 220
K
(22¢)

P T+ Tav+ daw)
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(v} Generate grid points (coordinates of cell centers)
along streatnlines and complete the procedure of marching
forward by one step:

1 u".( ukfl
k1 & v Hig Hig
t:J x:r+§A (q;kj fc‘;tl)’

1 v* pe !
k+1 k k Ll iJ
Yiil=yit5 42 (T"‘ P 1),

’ T2 i dug

k k+1

Hr’ W
kal_ kb gk i
7. =it dA ( % L4 k+])

q;) ij

sy J=1,2, .0

These relations represent simple trapezoidal integrations
along streamlines.

The present step is not a standard Godunov procedure
but is unique to the Lagrangian method. By this way, a
three-dimensional mesh is automatically generated along
the streamlines. Each grid point represents the center of a
fuid particie {a computational cell).

Now we complete the numerical procedure for one space
step. To march forward further, one goes back to (ii) and
repeats (ii)—(v).

3.2, Application of the TVD scheme

It is well known that, due to the presence of numerical
viscosity, the first-order Godunov scheme strongly smears a
discontinuity. In order to improve accuracy, various efforts
were made in the past decade to develop high resolution
monotonicity-preserving  schemes, such as TVD, ENO
schemes. Among these, we describe a postprocessing
scheme-—Sweby's TVD scheme and a preprocessing
scheme—Van Leer's MUSCL scheme.

Sweby’s TVD scheme procedure [8], which adds limited
anti-diffusive terms to the first-order Godunov scheme, is
straightforward and convenient. With the results from the
Godunov scheme, the E vector is upgrated in a component
by component way before it is decoded to give new flow
variables Q in the above Godunov procedure. Following
Sweby [8] we apply a flux limiter function ¢ and rewrite
(13} in the form

ES ' =Ef,—pd [FO1E) R, - kaT [GE1EE,
e AT TR RN ) P b
—glrin )2 1[4F 1,171
— KA [$(s7) B o[ 4Gy ii]
— ¢ ) B 124G 2] T

where u=A42*/4¢,, x=A41%/An;, and the superscript G

(23)
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stands for the numerical fluxes of Godunov scheme. For any
vector H the backward difference operators are

Ai [Hi+ 1/2.1] = Hi+ /2.0 H,_ 1/2. 3
A" [Hi.j+ 1/2] = Hi.j+ 12— Hr‘.j— 12+

The notation associated with the &-fluxes is

k172

I P —F(QH_]J) FG:H;z;

LAF; ;15 ;]_ = FG'“H’_F( k ),

h

“;’i; 2= 5[] + "f+ l,fz]s
+ #[A(f.')fﬂfz.j]i
2 f(e!)ff-;-] i (e.')l'c ] ’

+ _
.E

Similarly for the n-fluxes, we have

E AU ip)* ]*‘
i+1/2(A(fl r+1/2

k4172

[AG,J.+1/2]+—G Q{(_;+l) GG\H-UI

k + 12

[AG:J+1,’2]_ —G ”+m_G(Q )3
ﬁj+l/2=§[1 +w'+1/2]

+ K[A(gf), i+ 1/2]
et [(er),j+1 (e ) ]

i uz(d(gf) - m)

s?“—[ ]i].
! ﬁ;+1/2(

Here, ¢,, f,, and g, are respectively components of E, F, and
G, with /=134 .., 11 as their index number, We note that
since e, = K, e, = I are constant for all A along a streamline,
the upgrading of the numerical procedure needs to be done
for ey, e4, €5, ..., €4, Only. The Van Leer limiter function

gl)j+ 12)

0, r<0,

_ r>0, (24)
r+1

1s employed throughout this paper, since it was found [13]
that there is no substantial difference in the numerical
results between applying different limiter functions.

When the vector E is upgraded by the high resolution
TVD scheme, one may follow step by step the same proce-
dure as in the Godunov scheme.

In the preprocessing MUSCL scheme, the upgrading is
carried out for the flow vanables «, v, w, p, and p before they
are applied as the input for the local Riemann soivers. The
upgrading is performed in a dimension-by-dimension way.
For example, in the £ direction, let / be any of the above
physical variables, then, instead of assuming a uniform state
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in the cells (4,7) and (i+1,j), we assume linearly dis-
tributed states and use the linear relation to determine cell
interface flow variables and use them as the input to the
local Riemann solver,

fr=fi+1.j—0-5(ﬁ+2,j*fr+1,;‘) ¢("+);

Pt = fi+l.j—fi,1 ,
fi+2.j4fs+1.j

Jo=Li, ¥ O5(f = Fio1 ) plr™),

- i

S

where

#(r)=max(0, min(1, r))

is the minmod flux limiter and t and b correspond to top and
bottom states. These new f, and f,, are then fed to the local
pseudo 3D Riemann solvers; the rest of the procedure will
be the same as the Godunov one described in Section 3.1

The TVD schemes lead to better accuracy in the con-
tinuous region and higher resolution across discontinuities,
as will be seen in Section 6.

4. SOLUTION OF THE PSEUDO THREE-DIMENSIONAL
RIEMANN PROBLEM

As a building block, the Riemann problem and its solu-
tion play an important role in the Godunov-type schemes in
the numerical solution of inviscid compressible perfect gas
flow problems. According to the Godunov scheme, a
three-dimensional Riemann solver is required in our
numerical procedure (Fig. 2a). As we pointed out earlier,
the exact solution to a general three-dimensional Riemann
problem is not yet known. Even if it were available, the pro-
cedure must be rather complicated and lack of efficiency.
Chang and Zheng [10] have a detailed description of the
complexity of the higher dimensional Riemann problem. A
practical remedy is to employ the idea of the dimensional
splitting. The dimension-splitting technique reduces the
number of initial constant states from four in the fuil three-
dimensional Riemann problem to tweo in the so-called
pseudo three-dimensional Riemann problem (Fig. 2b),
This amounts to replacing the exact but unavailable
three-dimensional Riemann problem solution by four
approximate ones that are already known. In this section,
we will study the pseudo three-dimensional Riemann
problem (PRP} and its solution, discuss its validity as as
approximation to the 3D Riemann problem in the dimen-
sion-splitting technique, and then, as a consequence, show
why the new Lagrangian approach leads to crisp resolution
of contact discontinuity (slip surface).
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Given two uniform states Q, {top state) and Q, (bottom
state} in a three-dimensional space, we assume that the two
states are separated by a plane and that the direction of the
interaction line is known by referring to the above section
and Figs. 2b and c. As in Fig. 3, we choose the direction of
interaction line as the z-direction and the plane that
separates Q, and Q, (separating plane) as the y-z coor-
dinate plane. Then we have a Cartesian x-y-z coordinate
system. In this system the Euler equations for three-dimen-
sional steady flow have the form

d(pu)  d(pv) d(pw)
=0
ax + dy + 0z
Jou, o o Lo
) dy dz pdx
dv v dv 1dp
— v —twW—t- = 25
uax+vay+waz p 3y (25)
SO0 10
ox  dy 8z poz

d F ) J
ua(p/p”)wa—y(p/p”)+w5(p/p”)=0,

where u, v, w, p, and p are respectively the velocity com-
ponents in the new Cartesian coordinate system, pressure
and density. Let the two given states be written as

Q. =(u,v,w,p,p), x>0,
f 1 t ¢ T (263)
Q= (up, Vg, Wy, P, £5) 5 x <0,
and
8/6z =0, and w = const. (26b)

Equation (25) is reduced to the Euler equations of two-
dimensional steady flow:

dlpu}  olpv)
ox + ay =0
du du 1ép
M tv—+—o-=0,
dx 8y pox
(27}
dx dy pdy

a ? _a_ ¥y =
ua(p/p)way(p/p)—ﬂ-

The condition (26a), assuming that two uniform flows
separated by a plane and the direction of interaction line are
given, together with the condition (26b) stating that the two
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flows are uniform in the z-direction either before or afier the
interaction, are generally satisfied in our Godunov scheme
above. This ensures our using the 2D system {27) to replace
the iocal 3D system (25).

Now we consider the two-dimensional Riemann problem
of (27) with the initial condition (Fig. 3),

Q°={ noox>0,
o

x<f (28)
b ]

where Q°= (1, v, p, 0)7, Q%={(u,,v,,p,, p,)", and Qy=
(1, Uy, Pos p»)". This is a standard two-dimensional
Riemann problem and can be solved based on (27) and the
Rankine-Hugoniot relations by Newton's iteration. The
solution, which we still denote by Q°, generally consists of
all the elementary waves, namely, the oblique shock, the
slipline, and the Prandil-Meyer expansion. Based on Q° we
construct the Riemann solution of (25) as

x>x,,

Q‘—_—{(u, v, Wy, P, P) s (29)

(H, 0, Wy, P, F‘)T» X< Xy,
where x, is the x-coordinate of the slip surface.

Since #Q/dz =0 and w,, w, are given constants, the con-
ditions of (26) are satisfied. Therefore, (29) is the solution of
(25) and hence, the name of “pseudo three-dimensional
Riemann problem solution.” Physically Q may be regarded
as translating along the z direction, the upper part (the part
above the slip surface) and the lower part (the part below
the slip surface) of Q° at different speeds (w, and w,) across
the slip-surface. A numerical example will be illustrated in
Section 6.

If a solid boundary is present, only one initial state, say,
Q, is considered in the pseudo three-dimensional Riemann
problem (Fig. 2d). The problem is now termed a pseudo
three-dimensional boundary Riemann problem (PBRP).
Similar to the above procedure, we first solve the corre-
sponding two-dimensional boundary Riemann problem
and obtain the solution Q%= (u, v, p,p)" and let Q=
(,v,w,, p,p)7; then Q is the solution of the pseudo
boundary Riemann problem since (26) is satisfied.

Next in this section, for completeness, we briefly describe
the solution of the 2D Riemann problem and 2D boundary
Riemann problem. The procedure is the same as in [4] and
more details can be found from there.

It should be noted that even an exact 2D Riemann
solution is sought and applied to the 3D problem; the final
solution is still an approximate one due to other approxima-
tions. As in the case of Eulerian approach, the exact
Riemann solver may not be really needed and approximate
Riemann solvers or flux-splitting methods are considered to
be applicable. The use of the approximate Riemann solvers
or flux splittings may prove to be effective and can greatly
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save CPU time in practical computations. This subject 1s
beyond the scope of the current paper and can be a topic of
future research, Nevertheless, the exact 2D Riemann solver
is still employed in the present work. We also warn that the
2D Riemann solver does not always have a solution. As this
situation occurs, the supersonic marching scheme fails.

As an analogue to the one-dimensional Riemann problem
for unsteady flow, the standard Riemann problem for two-
dimensional steady flow is an initial value problem of the
system (27) with a discontinuous initial condition {28),

x>0,
x<0,

Q..

30
Qbs ( )

Q=(u,v,p,p)'r={

where the subscripts ¢ and b denote respectively top and
bottom states (Fig. 3b), which are counterparts to the left
and right states in one-dimensional unsteady flow. For
brevity, the superscript “0” has been dropped.

The solution of the 2D Riemann problem is self-similar in
the variable y/x and consists of three types of elementary
waves, namely, the oblique shock (+), the Prandtl-Meyer
expansion (—) and the slipline (0) (Fig. 3).

Let QO = (HU, Vo> Pos pO)T and Q = (H, b, P p)T be the
states across one of the above +, —, and O elementary
waves and @ = p/p,. Then, through any state Q,, with p as
parameter, there are two families of state connecting to Q,,
namely, the compression states (p>p,, 23 1) and the
expansion states (p< po. ®<1). The two families join
smoothly at Q, and can be regarded as a single family. This
makes it possible to apply Newton's iterative procedure in
the solution of the Riemann problem. The center issue in the

/ ——=—=  Subsonic branches (not used) \

Saolution of
the Riemann
problem —

Solution
of the !
boundary |
Riemann Yy
problem —‘\ 0 Qp

5
\ —— Initial guess

FIG. 4. Solution of 2D Riemann problem.
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solution procedure is to find common values of p and @
(p*, 6*%) at the slipline (Fig. 4). We now iilustrate the
solution details:

(1) In the p—0 plane {Fig. 4), there are two curves
passing through the two given states Q= Q, and Q,=0Q,,.
They are respectively defined as

8,+tan—*
[ e—1 ( 2yM? _1)”2]
0=0,(p)= MI—a+ I\(p+ Dasty—1 ’
rzp.,
0,+v(M)—-v(M), p<p,
(31a)
and
¢, +tan '
[ a—1 ( 2yM; _1)”2:‘
0=d,(p)= YMEI—a+1\(y+1)a+y—1 ’
P2 Po,
8, +viM,)—v(M), P Py,

(31b)

where v(M) is the well-known Prandtl-Meyer function.
These curves are sketched in Fig. 4.

(ii} The Newton iterative procedure is then employed
to find the intersect (p*, 8*) of the two curves. The object
function to be driven to zero in the Newton procedure is

J(p)=®(p}—Dyp) (32)

and the intersect of the tangent lines passing through @, and
Q, is used as an initial guess to the solution. In practice we
use the numerical derivative to replace the analytical ones.
Usually it takes 24 iterations to converge to a tolerance of
e< 1076,

(ili) With the slipline values (p*, 0*) calculated, we
evaluate the new p on either side across the slipline by the
Hugoniot relation,

p[MLI] az1,
p= (y—1)a+y+1

1
Po /ys

(33)
o< 1;

then the speed g via the total enthalpy H of the corre-
sponding cell. Finally, the velocity components are
available by

u=qcos @*

v =g sin §* {34}
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These newly calculated flow variables u, », p*, and p repre-
sent the state at the slipline. Recall that in our Lagrangian
formulation a slip-surface coincides with the cell interface (a
stream surface); these data are directly employed to
calculate cell interface fluxes as we described in the previous
section.

At the solid boundary, the flow inclination condition is
imposed and one of the curves in the p-# plane, say, =
&.( p) degenerates to a straight line § = 8* = const parallel
to the p axis (Fig. 4). In [4], this particular problem is
termed “boundary Riemann problem.” The solution of a
boundary Riemann problem is similar to the above proce-
dure, except by using a different object function,

Ap)=®(p)—0* or  f(p)=P,(p)—0*

At this stage, we are able to show that, as a result of the
application of the Riemann solution and the Godunov
scheme to the new Lagrangian formulation, the slip surface
(contact discontinuity) resolution remains sharp all the
time. The rest of the section will be devoted to this topic.

Consider a typical case that a slip surface exists between
two continuous flows and coincides with the cell interfaces
between cells (i + 1,7) and (4,7}, =1, 2, .., n. Thus,

pf—r 1,5 = pf(_,

and both V§,,  and V7§, are paraliel to the cell interfaces,
while there are jumps in p and the flow speed ¢ = 1V|. In the
marching, after interaction of the two flows, since the new
cell interface follows exactly the new slip-surface (a stcam
surface), the above relation still holds at the new cell inter-
face. Then the cell interface flux F 7 ; on either side of the
slip surface is continuous on the very same side where it is
derived, and still produces continuous solutions through the
Godunov scheme along each side of the slip surface. The
pressure is continuous in the whole region since it is
continuous across the slip surface. On the other hand, the
original discontinuities in p and ¢ across the slip surface will
still remain there since the marching evolution on each side
of the slip surface is continuous. In other words, the slip
surface remains sharp during the marching. In a special case
that both continuous flows are uniform, it is easily seen from
the Godunov scheme that both flows remain unchanged
during the marching forward.

In the case the slip surface does not coincide with a cell
interface, say, when it is generated by shock interaction, the
cell through which the true slip surface passes will be
considered as one of the intermediate cells in the captured
slip surface. Based on the above argument, no more inter-
mediate cells will be generated around the true slip surface,
i, no further smearing will occur during the marching.
Moreover, application of a high resolution TVD scheme
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(such as the Sweby’s) will help to reduce the number of
the intermediate cells and render a sharper captured slip
surface.

In the new 3D Lagrangian approach, the resolution of
slip surface is similar to its 2D counterpart, as has been
described by Hui and Loh [13]. Comparing to the ever
smearing and deteriorating resolution of contact discon-
tinuity in the Eulerian formulation, the new Lagrangian
approach has, indeed, provided an excellent attack to the
important issue. In the last numerical example in Section 6,

\I
\

5\

Streamline

{a)

Redirected F—}

©
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a comparison between results from the Eulerian appreach
and the new Lagrangian approach is presented.

5. WELL-POSEDNESS OF THE CAUCHY PROBLEM IN
GAS DYNAMICS AND ITS NUMERICAL TREATMENT

For a supersonic flow of Mach number AM>1
everywhere, the Euler equations of gas dynamics, either in
Eulerian or Lagrangian formulation, are of hyperbolic type
(see the Appendix). The numerical solution marches

Mach cone

(o)

—— Dihedrals
formed by
Mach cones

— Intersect of
Mach cones

~— Intersect of Eulerian
Maximum grid and Mach waves
marching
step "
{Eulerian) ——

~— Maximum marching step
{Lagrangian)

{d)

FIG. 5. Well-posedness of the Cauchy problem: (a) I” lies upstream of Mach cone; (b) I turns into Mach cone; (c) example of [ redirection;

(d) Lagrangian Courant number could be larger than the Eulerian one.
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forward along a time-like direction, say, the x-direction in
the Eulerian formulation or the flow direction (t or 1) in the
new Lagrangian formulation. In any case, the weil-known
CFL condition rules the maximum marching step size in
order to maintain stability.

Another important factor that controls the numericai
stability 1s the well-posedness of the Cauchy problem (initial
problem) of the Euler equations. The well-posedness may be
regarded as a general CFL condition. If it is violated, the
numerical procedure will soon blow up. The property of the
new Lagrangian system (13) that the physical flow is closely
followed makes the well-posedness analysis very intuitive
and straightforward. Consider a computational cell {also a
fluid particle) in Fig. 5, where the initial data are given on
the time (distance) surface . For the well-posedness of this
local Cauchy problem of {13), the basic theory of hyperbolic
equation {see Courant and Hilbert [14]) stipulates that I”
must lie upstream of the domains of influence (i.e., the Mach
cones) issuing from every point of I'; in particular, those
Mach cones issuing from the vertices of I

When a supersonic flow passes through a strong shock,
similar to the 2D case [ 5], the Mach number drops down
and the Mach cones downstream of the shock expand to
wider angles, while I changes its inclination as well (this is
more pronounced in the t-conservation form), Tt is possible
that at some marching step, the surface I” extends into the
interior of the Mach cone (Fig. 5b) and renders the local
Cauchy problem ill-posed. Following the experience from
the 2D version [15], a remedy is to redirect the inclination
(direction of normal vector) of the initial time (distance)
surface of each cell so that even after the flow passes through
the shock, the time surface still lies upstream of the Mach
cones. Due to the flexibility of time (distance) surface, the
redirection procedure can be performed not only at the
initiation stage but also in the midst of the computation,
without disturbing the formulation and any data already
computed.

The same difficuity o well-posedness, of course, exists in
the Eulerian formulation as well. However, as a resuit of the
fixed time-like marching direction, say, the x-direction, one
has to artificially rotate the reference frame and perform all
the pertinent coordinate transformations. Marconi and
Moretti [ 16 ] have used this approach. They employ a local
coordinate rotation to their non-conservative implicit
shock-fitting scheme to assure the proper domain of
dependence of the grid points so that supersonic velocity in
the marching direction is maintained. For a conservative
shock-capturing scheme, the procedure is expected to be
even more cumbersome. In this regard, the Lagrangian for-
mulation is much easier than the Eulerian ones; we simply
redirect the time (distance) surface.

In addition, as in the 2D case [15], it is interesting and
worth pointing out another advantage of the new
Lagrangian formulation over its Eulerian counterpart: the
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scheme may march forward with a larger Courant number.
This situation is illustrated in Fig. 5d, assuming that the
initial surface coincides with the x-y plane, Due to the com-
plexity of three dimensional geometry, we only present a
section of the entire configuration; it is still seen that the
Lagrangian formulation appears to have an “optimal”
Courant number since its marching direction (the flow
direction} is right in the middle of the Mach cones; while the
maximum Eulerian marching step in the fixed x-direction is
not to exceed where the Eulerian cell interface intersects any
Mach wave.

6. TEST PROBLEMS

In order to test the accuracy and robustness of the new
three-dimensional Lagrangian method, we apply it to
several test examples and compare the results to the exact
solutions, existing numerical solutions or experimental
results whenever they are available.

The first example is a pseudo three-dimensional Riemann
problem. Two flows with states @, and Q, as described in
Fig. 6 are separated by the separating plane and begin to
interact with each other at the interacting line, see Fig. 6a.
The problem is analysed in Section 4 and the exact solution
can be easily obtained via a standard two-dimensional
Riemann solver. In Figs. 6b and ¢, we illustrate the pressure
and density distributions along a time surface in the x-y
plane (interaction plane). It is observed that both numerical
results by Godunov and TVD schemes agree well with the
exact solution. In particuiar, the slipiine resoiution is so
crisp that there is practically no point in between. The TVD
scheme produces more accurate results in the continnous
part of the flow and a sharper profile across the shock. In
this example a mesh of 100 x 50 (in the y-z plane) cells is
employed.

In the second example, we consider a truly three-dimen-
sional initial value-boundary value problem—the super-
sonic inviscid corner flow. The geometrical configuration is
shown in Fig. 7a. Two intersecting wedges, both with angles
of 9.5° form an axial corner over which there is a Mach 3
flow. The flow field consists of two planar wedge shock, two
embedded shocks, a corner shock, and the shear layers (slip-
surfaces) as shown in Fig. 7. West and Korkegi [17] carried
out an experiment for this case, which we intend to use as a
comparison to our numerical result. In their experiment, the
turbulent boundary layers are thin and their effect on the
shock displacement is minimal. Thus, the overall picture
may be considered as an inviscid phenomenon, except near
the walls. We employ a mesh of 45 x45 points in the y-z
plane for the computation, We use a 3D color displaying
package FAST, developed by NASA Ames Research
Center, for presenting the numerical results. But the color
pictures are turned into grey ones for convenience.
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FIG. 6. A pseudo 3D Riemann problem: (a) numerical solutions on plane NM(x-y plane). V, =(3.3466,0, —1)for y >0, V; =(2.8397,0,08) for y < 0;
(b) pressure distribution along line 4 4° on N-plane; (¢} density distribution along line A4" on N-plane.

Figure 7b illustrates the w-velocity contours on a typical
A plane. The corner shock, embedded shocks, and 2D wedge
shocks are clearly shown. In particular, the triangular slip-
surfaces are distinct and sharp, They all agree well with the
experimental locations by West and Korkegi [17]. In
Fig. 7c, we present the isobars on the same A plane. All the
shocks are still clearly visible. The slip-surfaces now dis-
appear because the pressure across them is continuous.
However, a gentle decrease in pressure appears from the
corner shock toward the walls and the wall corner.
Figure 7c shows the isopycnics (density contours) on the
same A-plane. The density peaks at the two triple points,
where the embedded shock, the wedge shock, and the corner
shock meet one another. Figure 7e displays how the grid on
a typical plane deforms with the flow, the grid remains

straight until the shock is encountered and changes in con-
form with the deflection of the streamline, The shock angle
agrees well with the exact solution for the 2> wedge shock.
Finally, in Fig, 7f, we include the result by Liou and Hsu
[18], which is based on solving the Navier-Stokes equa-
tions with very high Reynolds number in the standard
Eulerian formulation. The similar 45 x 45 but non-uniform
grid points with finer size at the walls are used in their
example. It is seen that their slip-surfaces are less clear.

In the third problem, we calculate a Mach 4 flow past a
delta wing with a 10° angle of attack. In this case, we intend
to show the robustness of our method in handling different
body shapes in supersonic flow. The symmetrical wing body
is illustrated in Fig. 8a. The semi-span angle ¢ =40°, the
semi-thickness angle ¢ =2.5° apd its longitudinal cross
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each cell. For numerical stability reasons, such a choice for
T is necessary (see Section 4), and the unpleasant “zigzags”
soon disappear on other stream surfaces. Figures 8d and ¢
show the i1sobars on two typical stream surfaces that are
parallel to, but above and below, the wing body. In Figs. 8f
and g, we demonstrate the isobars and isopycnics on the
symmetric plane. Bow shock, trailing shock, three expan-
sion fans, and, in particular, the slipline are clearly dis-
played. In Fig. 8g, one can even find a very weak wave as a
result of the reflection of the ridge fan from the leading-edge
shock. Furthermore, in Figs. 8h andi we present the
detailed pressure and density distribution along a typical 4
line on the symmetric plane to show the quality of the solu-
tion, in particular, a clear discontinuity across the slipline
(surface) in Fig. 8i. Finally, Figs. 8j and k show the isobars
and isopycnics on a typical spanwise cross section parallel
to the symmetric plane. They bear features similar to those
in the symmetric plane.

In the last example, we compute a novel 3D Riemann
problem. For many years, the 3D Riemann problem has
been a topic of constant interest and remained unsolved. To
our knowledge, we are the first to calculate the numerical
solution of a problem of this type. The capability of our
scheme is based on its excellent behavior across the slip-
surface. Having no existing solution for comparison, we
employ grid meshes of 50 x 50 and 100 x 100 and confirm
that the results are similar. Another confirmation comes
about from a side-by-side comparison with the result by an
Eulerian finite volume approach (Fig. 10) employing same
number of cells. The Riemann problem in question is shown

in Fig. 9a, where the initial conditions are given in the four
quadrants of the y-z plane. For better understanding of the
flow, we choose identical states in the first and third and
second and fourth quadrants, that is,

Ql=(u1’ vy, Wi, P, p!)—rzis; 03 0’ 0251 O‘S)T;

Q2= (u29 '-72) W2, sz p2)T= (353 03 0, le I}T'

Figure 9b shows the isobars on a typical A plane where the
flow is fully developed. Due to symmetry, only part of the
waves are labelled. At the outskirts around the four sides, as
expected, the flow behaves like two-dimensional flows with
all the 2D elementary waves, namely, shocks, sliplines (sur-
faces), and Prandtl-Meyer expansion fans. In the interior,
genuine 3D flow occurs. A singular point (line) is produced
when two 2D shocks collide with each other. This singular
point forms the nucleus of a compression kernel. When two
2D expansions come together, they form an expansion
kernel. The compresion kernels and expansion kernels are
connected by continuous interior flow except across a slip-
surface. The compression, expansion kernels, 2D shocks,
and expansion fan regions are clearly observed. Similar to
the 2D case, between a shock and its corresponding region,
their exists a region of uniform pressure. The density con-
tours are presented in Fig. 9c. The slip-surfaces are crisp
since they are never smeared by the Lagrangian approach.
Figure 9d demonstrates the contours of u-velocity compo-
nent. In both Figs. 9¢c and d, the slip-surfaces form a pair of
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curved symmetrical surfaces. It is interesting to compare
the phenomena at a compression kernel to those of the
well-known corner flow problem (Example 2). In a corner
flow problem, when the two 2D wedge shocks collide, a
new corner shock and two embedded shocks are generated,
together with two triple points and a shear layer (slip-
surfaces). In the 3D Riemann problem, with the absence
of body surfaces, however, the collision of 2D shocks
only produces a singular point(line). Around the singular
point in the compression kernel, the 2D shocks vanish
continuously.

Figure 9¢ shows a side view of the solution at one of the
outermost stream surfaces. On this stream surface, the flow
is identical to a 2D Riemann problem solution. In Fig. 9f,
we display the shape of a slip-surface and several typical
meshes. It is seen that the meshes are automatically
deformed, expanded, or condensed, according to the flow.

Generally, our result agrees well with the qualitative
description in the paper by Chang and Zheng [10].

Atlast, in Fig. 10, we display contours of constant density
and Mach number, resulting from the Eulerian approach at
a typical station for a side-by-side comparison with the
Lagrangian result. Great care has been taken in con-
structing the Eulerian formulation to ensure reliable results.
For example, the pseudo 3D Riemann solver of Section 4 is
employed in this approach to take care of the interaction
between two 3D flows across the cell interface, and the
effects of 3D flow complexity are respected as much as
possible. From the similarity of flowfield patterns, we con-
firm that both approaches give consistent numerical results.
On the other hand, it is observed that the slip-surfaces by
the Eulerian approach have grown excessively, such that the
flow field pattern is greatly distorted, while the Lagrangian
counterparts remain crisp.
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FIG. 10. Solution to the symmetrical 3D Riemann probiem by an
Eulerian approach for comparison with the Lagrangian one: (2) isobars on
a x-plane; (b) isomachs on a x-plane; (c) isomachs on a side plane.
Compared to Figs. 9(b), (d), and (e), respectively.

CONCLUDING REMARKS

In this paper, we have developed a new Lagrangian
method for steady three-dimensional supersonic flow com-
putation. The method employs the “Lagrangian distance”
and the stream functions as the independent variables, in
place of the Cartesian coordinates x, y, and z. The boundary
conditions are satisfied exactly and the method is robust,
accurate, and particularly appropriate for complex
geometry. The new approach is superior than the conven-
tional Lagrangian (or Lagrangian-Eulerian) one for the
geometrical quantities are handled by conservation laws
(compatibility equations). Compared to any Eulerian
method the new Lagrangian approach is characterized by
the following features:

(1) A computational cell is literally a fluid particle and
flow physics is closely followed. The computation is truly
multi-dimensional, rather than the usual one-dimensional,
splitting.

(2) A slip-surface is always crisply resolved without any
detection and special treatment, since a computational cell
remains identical to the same fluid particle ali the time.
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(3) The grid is automatically gencrated along the
stream tubes as part of the solution. No a priori grid genera-
tion is needed.

(4) The inherent parallelism of the Lagrangian
approach, that each computational cell may be considered
as a fluid particle and a single processor interacting with its
surrounding neighbours, lends itself to the simple
implementation of massively parallel computation on
machines such as the CM-2 to CM-5 models by the
Thinking Machine Co. (this has been confirmed by the
computations of the 2D version [19]).

In summary, the Lagrangian approach is observed to
resolve both discontinuities (shocks and slip-surfaces)
sharply in complicated geometry; once combined into
massively parallel computation, we believe that it will
become a powerful tool for steady supersonic flow computa-
tion. Research on the Lagrangian approach to transonic
and subsonic inviscid compressible flows is currently under-
way and will be reported shortly.

APPENDIX: HYPERBOLICITY OF EQ. (13)
In this Appendix, we shall show that the Lagrangian con-
servation form (13) of the Euler equations is still of hyper-
bolic type provided the flow is supersonic everywhere. Let

Q=(u,v,w,p,p, UV, WX, Y,Z)".

The Lagrangian conservation form can be rewritten as

Q 0Q aQ
AL — B + 8. =~ aé +Cy —0, (Al)
where
JE oF G
Ap aQ+BL 7Q CL":%’

are 11 x 11 matrices (subscript “L” denotes Lagrangian):

J

(J, Ju Js 0 Kpp* 00 0 0 0 0
0 0 0 1 —a2 000000
K 0 0 J, 0 000000
0 K 0 J, 0 000000
0 06 K Jy 0O 000000

4.={0 0 0 0o 0 10000 0],
0 0 0 0 0 010000
0o 0 0 0 0 001000
0 0 0 0 0 000100
0 0 0 0 0 000O0T1 0
0 0 0 0 0 000 0O 1]
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)
I Jos Jas 0 0000 0 0 01
0 0 0 0 6000 0 0 0
0 0 0 J, 0000 o 2 T
a9 q
0 0 0 Jp 00 0 0 2% put
q q
0 0 0 J, 00 0 0 2 T2 o
g " q
B.=| (g —1
= WD w i 0o 0000 0 o0 0|
q q
272
—1
wo Wlg-h e 0 0000 0 0 0
q q q
2.2
—1
i mo W=D g 5000 0 0 0
g g g
0 0 0 0 0000 0 0 0
0 0 0 0 0000 O 0 0
L0 0 0 0O 006006 6 0 o |
s T3z I3 0o 0 0 0 0 00 0)
0 0 0 00 0 0 0 000
0 0 0 J, 0 o 2 p—; 0 00
0 0 0 7. 0 2 0 ZZ 5 0 0
q q
0 0 0 Js 0 22 P g 9 0 0
g q
C,= 0 0 0 00 0 0 0 000
0 0 0 © 0 0 © 0 000
0 0 0 00 0 0 0 000
212
—1
Gl =D w i 00 0 0 0 000
q q q
2.2
—1
wo (g 1) 0 60 0 0 0 000
q q
24,2
—1
= o =D g g g0 0 0 00 0
g q q q J
The hyperbolicity of (Al), to be consistent with the com- By simple algebraic manipulation, the lefi-hand side of

monly used one (for example, see Hirsch {20]), is defined as  {AZ2) can be rewritten in a block diagonal form:
follows:

DErFINITION.  The system (Al) is said to be hyperbolic, if M 0
all the eigenvalues p 0 N’ ’
det lud, —aB, - FC, | =0 (A2)

are real for any given real constants o and § (¢ + 82 #£0). where M is a 5 x 5 matrix,
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why—aly =Bl wly—atyn—pJ5
0 0
M= uK 1]
Q LK
0 0
and NV a 6 x 6 one,
# 0 0 0 0 0
0 0 0 00
Ne 0 6 £ 0 0 0 _
00 0 0 Q
00 0 0 x 0O
0O 0 0 0 0 u

The matrices M, N represent, respectively, the eigenequa-
tions from physical laws and geometrical laws (com-
patibility).

Since det ||¥| =45, the geometrical laws, as expected,
only involve a linearly degenerated mode with g = 0. In the
rest of the Appendix, we shall concentrate to show that all
the roots of det | M|l =0 are real if the flow is supersonic
everywhere. Thus the system (Al} and hence (13) is of
hyperbolic type.

To find the roots of det || M) =0, we first note that M
only involves the upper left corner 5 x 5 submatrices of 4, ,
B, ,and C,, namely, A,, B,and C,,

Jyw Jao Ja 0 K/,Dz

0 0 ¢ 1 -4
A= K 0 0 J, 0 s

0 K 0 J, O

0 0 K Jiy 0

Ja Jn Jp 00

0 0 0 0 0
B,=] 0 0o 0o Jy 0 s

O 0 0 Jn 0

0 0 0 Jy 0

Jy Jn I 0 0

¢ 0 0 0 0
C=} ¢ o 0 Jy5 0 ,

0 0 0 Jx 0

¢ 0 0 Ji 0

and det 1M || =90 has the form

det [lud;—aB,—fC,|| =0. (A3)
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uliz— oty — Bl 0 - pKfp?
0 U —pa’
0 wh g —ady B Y
0 pdy— oty — B 0
uK pl vz —atyy— B 0

This can be shown to be associated with the Euler equations
in Lagrangian variables,

aqQy Q' oqQ
A[H+B!E—+ C, an

< g, (A4)

where Q' =(u, v, w, p, p)".

We also note that (A4} can be derived directly from the
Euler equations of (1) by the coordinate transformation
between (x, y, z) and (4, £, n). The details are illustrated as
follows:

Similar to (13), the Euler equations (1) can be rewritten
in the form of (A1),

oQ
dx

oQ’ aQ’
+BE_Q,+ CE‘dQ_=O’

As oy oz

(AS)

where the subscript “E” represents Eulerian, The hyper-
bolicity of (A5) stipulates (see, for example, [20]) that for
any given real constants &’ and §' (a2 + > #0), the eigen-
equation

det ' dc—a'By—B'C]| =0 (A6}

always has real roots g’ {eigenvalues).
Recall that

! Y 8
= jlla+jlza+1138_z >
R, 8 .
= Jz:a+]226_}:+1236_2' ,
i}
oz )’

where j,, (r, s =1, 2, 3) are the elements of the Jacobian

2|

LA
o¢
9

Y
5'7= Jaxa‘*'hz@‘{‘hs

_dx, 3, 2)
A E Y

Substituting these into (A4) and collecting like terms, we
have a form of (A5),

. . . o . , . oqQ
(Jndr+juBi+ iy C) _aQ +(Jiz A+ j2Bi+ jnC) —‘"Q
x dy
. . . oQ
T {(J134,+ Jaua B+ ji C) F ={. (AT)



248

It is well known that if the flow is supersonic everywhere,
the Euler equation (AS) or (A7) is of hyperbolic type. From
the hyperbolicity of (A7), the eigenequation (A6)
det g’ (jii A+ ju Brt+ s C) — o' (Jradi+ ju Bi+ j C)
=B (At ju B+ j Gl =0 (A8)

has real roots 4’ for any given constants ' and f’. By

rearranging terms in (A%), we have a form of (A3), ic,

det | M| =0,

ﬂj23) B!
(A9}

det | (u'y, — 12— Blha) Ast (s — 2lfan —
+{pjy —alfs— Bln) €| =0.

Comparing (A9) with (A3), it is observed that there
exists a one-to-one correspondence between (g, o, f) and
(W, o', ') (1J5] #£0) and that (u, o, B) can be regarded as
the linear combination of (g, ¢, §'}. Since no complex
number is involved in the operation, we conclude that all
the cigenvalues u for det [Af]f = 0 must be real and that the
system (A1) or (13)is of hyperbolic type. As a matter of fact,
it can be shown that for (A1) there are two non-zero real
eigenvalues corresponding to the Mach concoid charac-
teristic directions and one eigenvalue of g =0 with muiti-
plicity of nine, corresponding to the stream direction.
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